Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This work concerns the analysis and design of distributed first-order optimization algorithms over time-varying graphs. The goal of such algorithms is to optimize a global function that is the average of local functions using only local computations and communications. Several different algorithms have been proposed that achieve linear convergence to the global optimum when the local functions are strongly convex. We provide a unified analysis that yields the worst-case linear convergence rate as a function of the condition number of the local functions, the spectral gap of the graph, and the parameters of the algorithm. The framework requires solving a small semidefinite program whose size is fixed; it does not depend on the number of local functions or the dimension of their domain. The result is a computationally efficient method for distributed algorithm analysis that enables the rapid comparison, selection, and tuning of algorithms. Finally, we propose a new algorithm, which we call SVL, that is easily implementable and achieves a faster worst-case convergence rate than all other known algorithms.more » « less
-
We consider the distributed optimization problem in which a network of agents aims to minimize the average of local functions. To solve this problem, several algorithms have recently been proposed where agents perform various combinations of communication with neighbors, local gradient computations, and updates to local state variables. In this paper, we present a canonical form that characterizes any first-order distributed algorithm that can be implemented using a single round of communication and gradient computation per iteration, and where each agent stores up to two state variables. The canonical form features a minimal set of parameters that are both unique and expressive enough to capture any distributed algorithm in this class. The generic nature of our canonical form enables the systematic analysis and design of distributed optimization algorithms.more » « less
-
We present a unified framework for analyzing the convergence of distributed optimization algorithms by formulating a semidefinite program (SDP) which can be efficiently solved to bound the linear rate of convergence. Two different SDP formulations are considered. First, we formulate an SDP that depends explicitly on the gossip matrix of the network graph. This result provides bounds that depend explicitly on the graph topology, but the SDP dimension scales with the size of the graph. Second, we formulate an SDP that depends implicitly on the gossip matrix via its spectral gap. This result provides coarser bounds, but yields a small SDP that is independent of graph size. Our approach improves upon existing bounds for the algorithms we analyzed, and numerical simulations reveal that our bounds are likely tight. The efficient and automated nature of our analysis makes it a powerful tool for algorithm selection and tuning, and for the discovery of new algorithms as well.more » « less
An official website of the United States government
